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Abstract
We determine the phase diagram of the phase field crystal model in three dimensions by using
numerical free energy minimization methods. Previously published results, based on single
mode approximations, have indicated that in addition to the uniform (liquid) phase, there would
be regions of stability of body-centered cubic, hexagonal and stripe phases. We find that in
addition to these, there are also regions of stability of face-centered cubic and hexagonal close
packed structures in this model.

1. Introduction

One of the challenges in modern computational materials
science is being able to access phenomena that take place
on different time and length scales. Recently, a new model
called the phase field crystal (PFC) model has been constructed
that describes phenomena taking place on an atomic length
scale but diffusive timescales [1, 2] the combination of
which remains inaccessible for molecular dynamics (MD)
simulations using present day computers. The PFC method
is able to achieve this combination of scales by replacing the
individual atoms in MD simulations by a continuous field that
exhibits the periodic nature of the underlying atomic lattice
in the solid phase, but evolves in diffusive timescales [3].
At present, the PFC model has already proven itself useful
in modeling various phenomena, including elastic and plastic
deformation of materials [2, 4], dislocation dynamics [5],
crystal growth [6, 7] and the effect of an external force
on two-dimensional layers [8–10]. However, being only a
few years old, the methodology is still facing many topical
challenges, including e.g. establishing a solid connection
between the PFC model and more microscopic theories, as well
as finding a way to obtain the parameters of the model for a
given material [7, 11–13]. One of the current challenges in
PFC modeling is being able to model different close packed
crystal structures. Because the well-known single mode

approximations to the original PFC free energy functional
have not shown stable close packed crystal structures, some
ad hoc modifications to the free energy functional have been
proposed [14, 15]. In the present work, we show that a
more accurate calculation of the extended phase diagram of
the original PFC model reveals that the three-dimensional
(3D) close packed hexagonal and cubic structures are in fact
stable in a certain parameter range of the model. This
means that at a qualitative level, the original PFC model can
well be used to study these crystal structures without any
modifications, although to construct a more quantitative model
for the close packed phases we believe such modifications are
indeed necessary.

2. Model

In phase field crystal modeling, one models an order parameter
field that has periodic ground states, and is driven towards
its ground state through dissipative dynamics. Thus, the key
ingredient in such theory is a dynamical equation that drives
the order parameter field towards its ground state given by a
minimum of a free energy functional. A minimum requirement
for a free energy functional for PFC studies is that it should
have, at least in some parameter range, a periodic ground state.
We study the simplest known free energy functionals that fulfil
these requirements. These models are described by a free
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energy that contains local contributions up to the fourth order,
and also gradient terms up to fourth order. This family of free
energy functionals was adapted to PFC models from the work
of hydrodynamic fluctuations by Swift and Hohenberg [16],
and they are the most simple and widely used free energy
functionals in PFC studies to date ([1] and references therein),
although some higher order models have also been proposed
recently [13, 15]. We consider here the free energy of the
system described by an order parameter φ(r), which is given
by

F[φ(r)] =
∫

dr
{
φ(r)

2
[a + λ(q2

0 + ∇2)2]φ(r)

− b

3
φ(r)3 + g

4
φ(r)4

}
, (1)

where a, λ, q0, b and g are phenomenological parameters. The
third order term is not included in all of the studies, but in the
following we show that whether one includes this term or not
does not make a difference to the qualitative features of the
model. To do this, we introduce in equation (1) a set of new
variables,

x = q0r; (2)

ψ =
√

g

λq4
0

(
φ − b

3g

)
; (3)

ε = 1

λq4
0

(
b2

3g
− a

)
. (4)

We then ignore all terms that are either constant or linearly
proportional to the dimensionless order parameter field ψ , as
they will not make a contribution in a conserved model, and
we define a dimensionless free energy F as gλ−2q−5

0 times the
original free energy without the constant and linear parts. We
end up with

F[ψ(x)] =
∫

dx
{
ψ(x)

2
[−ε + (1 + ∇2)2]ψ(x)+ 1

4
ψ(x)4

}
,

(5)
which is exactly the same free energy one gets from the free
energy without the third order term (e.g. [12]). Thus this
variable change shows that the phase behavior of all models
defined by equation (1), even with all the five parameters
included, can be examined completely by studying the two-
dimensional space spanned by ε and the average value of ψ .

In general, ε is often considered to be a small parameter.
From a mathematical point of view, it is easier to derive
amplitude expansions to this model, if one can make the
assumption that ε is small [12, 17]. Some attempts to relate the
parameters of equation (1), and thus ε, to physical quantities
of real materials exist in the literature. An analysis of elastic
and surface properties by Wu and Karma suggests that for iron
this parameter should be on the order of 0.1, supporting the
hypothesis of small ε [12]. However, the exact parameters will
depend on the material studied and for qualitative studies it
might even be desirable to use parameters that are unrealistic
in some perspectives, if using such parameters will have some
other benefit. For these reasons, in the present work we will not
restrict ourselves to only the limit where ε is small. Instead,
we aim at a more complete assessment of the phase diagram,
allowing ε to vary between 0 and 1.8.

3. Results

In order to calculate the phase diagram of the PFC model
we have calculated the free energies of liquid, body-centered
cubic (bcc), face-centered cubic (fcc), hexagonal close packed
(hcp), simple cubic, rods and stripes phases as a function
of ψ̄ , i.e. the average value of ψ(x) for each parameter ε
studied. For calculating the free energy at a given point on ψ̄ ,
ε space, we have initialized a system of the size of a single
unit cell with the one-mode approximation representing the
given lattice structure (appendix A), with periodic boundary
conditions. Then, we have employed a numerical integration
of the conserved equation of motion,

∂ψ

∂ t
= ∇2 δF

δψ
, (6)

to find the actual density profile that minimizes the free energy,
and the free energy. The numerical method utilized for
integrating the equation of motion is based on a semi-implicit
operator splitting [18], with the Laplace operator discretized
in Fourier space as �k = −k2. In addition, we minimize the
free energy with respect to the lattice spacing of the periodic
phases. This is achieved by calculating the free energy of a
given phase with three different lattice spacings in parallel.
Based on these, we calculate the first and second derivatives of
the free energy with respect to the lattice spacing, and we then
employ a Newton–Raphson iteration to find the lattice spacing
that minimizes the free energy of the given phase at the given
point in the (ψ̄, ε) space. The spatial resolution used in this
study is such that there are 16 grid points per unit cell in each
direction. A small number of points in the phase diagram were
checked with the spatial resolution doubled, and the results
were found to be practically indistinguishable from the ones
obtained using our standard resolution.

After calculating the minimum free energies of all the
phases as a function of ψ̄ , the coexistence densities are found
by using the standard common tangent construction, where the
coexistence densities ψ̄i and ψ̄ j of phases i and j are found
through the relations

∂ fi (ψ̄, ε)

∂ψ̄

∣∣∣∣
ψ̄i

= ∂ f j (ψ̄, ε)

∂ψ̄

∣∣∣∣
ψ̄ j

; (7)

f j (ψ̄ j , ε)− fi (ψ̄i , ε) = ∂ fi (ψ̄, ε)

∂ψ̄

∣∣∣∣
ψ̄i

(ψ̄ j − ψ̄i ), (8)

where fi and f j are the free energy densities of phases i and
j , respectively. Equation (7) implies that at coexistence, the
coexisting phases must have equal chemical potentials, and
equation (8) implies that the pressures of the coexisting phase
must also be equal.

From previous studies it is known that in the limit where
ε is small, the one-mode approximations to the free energies
of different phases become exact [2]. Results of our numerical
calculations for the phase diagram in this limit are shown in
figure 1, together with ‘one-mode’ results obtained by using
our double tangent method with analytically derived one-
mode approximations for the free energies of different phases
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Figure 1. Small ε limit of the phase diagram. Crosses show points of
coexistence as obtained from our numerical calculations and the lines
show approximate results based on the single mode approximation.

(appendix A). Examining the results, we find very good
agreement with the small ε analysis of Wu and Karma, which
shows that the asymptotic behavior of liquid–bcc coexistence
lines in the limit of small ε is given by −√

45ε/103, and
the linear terms in their expansions as powers of ε1/2 are
zero [12].

When ε is increased, the difference between one-mode
and numerical results increases accordingly. This becomes
exceedingly important for values of ε exceeding 0.35, because
at that value, we find a triple coexistence of liquid, bcc
and hcp structures. This result is in contradiction with the
prediction from the one-mode approximation that the body-
centered phase should always have a lower free energy than the
close packed ones. Beyond that value, the liquid crystallizes
into a stable hcp solid in the interval ε = 0.35 · · · 0.48. In
the upper end of this interval, we find a triple coexistence,
this time with liquid, hexagonal close packed and fcc phases
coexisting with one another. From ε = 0.48 upwards, the
stable crystalline phase that forms from the liquid has a fcc
structure.

The region of the phase diagram where all 3D crystalline
phases are found, is shown in figure 2. It is seen that the
coexistence gaps between the solid phases are very small, the
difference in ψ0 in the coexisting phases being on the order of
10−3 for bcc–hcp and 10−4 for hcp–fcc. Especially for the hcp–
fcc boundary, a small difference in free energies, and thus a
small coexistence gap, is expected due to the close resemblance
of the two structures. Indeed, the differences in free energy
densities of the two close packed phases in the relevant range
is on the order of 10−5, while the corresponding differences
are on the order of 10−4 between bcc and close packed
phases and 10−2 between crystalline and uniform phases. Due
to the tiny differences in free energies of the fcc and hcp
phases, reproducing the exact regimes of stability shown in
figure 2 requires a numerical precision that is impractical for
many numerical simulations. Therefore, the exact regimes of
stability in a given simulation will, to some extent, depend on
the numerical details of the method. We may also speculate
that due to the tiny differences in free energies of the phases,
including a Langevin noise in the equations of motion could

Figure 2. Part of the phase diagram where the hcp phase is stable.
Symbols show the points obtained from our numerical calculations,
with lines connecting the symbols.

Figure 3. Phase diagram up to ε = 1.8 as obtained from our
numerical calculations. For clarity, the individual points where
calculations were done are not shown.

alter the stability regimes even significantly, although the effect
was not studied in the present work.

The stability regime of the fcc phase finally terminates in
a triple coexistence with the rods phase at ε ≈ 1.6. Above
that point, the stable phase that coexists with the uniform
phase is the two-dimensional hexagonal structure. The total
phase diagram up to ε = 1.8 obtained from our numerical
calculations is shown in figure 3.

The surprising result of finding regions where hcp and fcc
phases are stable may be of great importance for modeling
materials characterized by these structures with the PFC
model. However, we have seen for the case of modeling metals
with bcc structure that fitting the fourth order model studied
with experimental material properties has limitations [13]. For
the hcp and fcc phases, we see no reason to expect this situation
to be better, especially as those phases stabilize even further
away from the presumably physical limit where ε is small.
In order to describe hcp and fcc materials quantitatively with
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the PFC model, mathematical modifications to the free energy
functional, such as very recently proposed by Wu et al [15], are
very likely necessary. Despite that, it is presumably of interest
to use this simple model for qualitative modeling of the various
crystal structures.

4. Conclusion

We have determined the phase diagram of the Swift–
Hohenberg phase field crystal model in three dimensions
through numerical free energy minimization methods. As
our most surprising finding, we find that there are regions
of stability of fcc and hcp structures in this model. This
means that at least on a qualitative level, the PFC model
can be used to study phenomena in these phases without
any modifications. However, we believe that in order to
make the model reproduce selected physical properties of a
given material, mathematical modifications of the free energy
functional may be necessary.
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Appendix A. Single mode approximations

Single mode approximations to the density profiles of different
crystal structures are of the form

ψ(x) = ψ̄ + Aϕi(x), (A.1)

where ψ̄ is the mean value of ψ(x), Ai is the amplitude
of density fluctuations and ϕi(x) is the single mode function
obtained by summing, with equal weights, plane waves whose
wavevectors constitute the principal set of reciprocal lattice
vectors of the lattice in question. For the various phases
studied, the ϕs are

ϕBCC(x) = cos(qx) cos(qy)+ cos(qx) cos(qz)

+ cos(qy) cos(qz); (A.2)

ϕFCC(x) = cos(qx) cos(qy) cos(qz); (A.3)

ϕSC(x) = cos(qx)+ cos(qy)+ cos(qz); (A.4)

ϕRods(x) = cos(qx) cos

(
qy√

3

)
− 1

2
cos

(
2qy√

3

)
; (A.5)

ϕStripes(x) = cos(qx), (A.6)

where qs are inversely related to the lattice spacing. For
the hexagonal close packed structure, there is no single mode

function, thus we use the ansatz [6]

ϕHCP(x) =
[

cos

(
2qy√

3

)
+ cos

(
qx − qy√

3

)

− cos

(
2π

3
− qx + qy√

3

)
+ cos

(
qx + qy√

3

)

− cos

(−4π

3
+ qx + qy√

3

)

− cos

(−2π + √
12qy

3

)]
cos

(√
3

8
qz

)
. (A.7)

In order to find the single mode approximation to the free
energy of a given phase as a function of its wavelength
and amplitude, the density profile of that phase, defined by
equation (A.1) and one of equations (A.2)–(A.7), is plugged
in equation (5) and the integrals are evaluated analytically.
Then the free energy is minimized w.r.t. A and q to find
the approximate analytical expression to the free energy
as a function of ψ̄ and ε. Once these expressions are
found for all the phases of interest, we solve numerically
equations (7) and (8) to find the single mode approximations
to the coexistence densities as a function of ε.
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